After passing too close to a supermassive black hole, the star in this artist’s conception is torn apart into a thin stream of gas, which is then pulled back around the black hole and slams into itself, creating a bright shock and ejecting more hot material. Credit: Illustration by Robin Dienel courtesy of the Carnegie Institution for Science
Washington, DC — NASA’s Transiting Exoplanet Survey Satellite (TESS) has for the first time seen the aftermath of a star that was violently ripped apart by a supermassive black hole. Catching such a rare event in action will help astronomers understand these mysterious phenomena.
The observation is reported in The Astrophysical Journal by a team of astronomers led by Carnegie’s Thomas Holoien, who is a founding member of the international network of telescopes that made the discovery — the Ohio State University based All-Sky Automated Survey for Supernovae (ASAS-SN).
Tidal disruption events, or TDEs, occur when a star gets too close to a supermassive black hole — objects with immense gravitational pull that are thought to lie at the center of most large galaxies. The black hole’s forces overwhelm the star’s gravity and tear it to shreds. Some of its material gets flung out into space and the rest falls back onto the black hole, forming a disk of hot, bright gas as it is consumed.
By observing the light given off during this process, which increases to a peak brightness and then tapers off, astronomers can better understand the physics of the black hole and the forces driving these phenomena.
TESS was able to provide complementary observations of this newfound TDE, called ASASSN-19bt, which show its evolution with unprecedented detail. The spacecraft’s extremely wide field-of-view and continuous coverage make it a great tool for detecting and monitoring TDEs.
“Only a handful of TDEs have been discovered before they reached peak brightness and this one was found just a few days after it started to brighten; plus, thanks to it being in what’s called TESS’ ‘Continuous Viewing Zone,’ we have observations of it every 30 minutes going back months — more than ever before possible for one of these events,” said Holoien. “This makes ASASSN-19bt the new poster child for TDE research.”
Because the discovery team rapidly triggered follow-up observations of ASASSN-19bt by both space- and ground-based telescopes, they were able to garner a very complete picture of the TDE.
“I was actually observing at Carnegie’s Las Campanas Observatory on the night of the discovery,” Holoien added. “So, I was able to take spectra with our du Pont and Magellan telescopes less than a day after the event was first seen in South Africa by part of ASAS-SN’s network.”
Spectra separate the light from a celestial object or event into its component wavelengths, like a window prism making a rainbow when sunlight passes through it. This can reveal information about the speed and chemical composition of material from the chewed-up star.
The team — which also included Carnegie’s Decker French, Thomas Connor, Nidia Morrell, Andrew Newman, and Gwen Rudie, as well as Carnegie-Princeton Fellow Rachael Beaton — was able to follow the TDE’s evolution from 42 days before its peak brightness, tracking it backward from the night the event was discovered. The data they report in their paper continues through 37 days post-peak, but they have taken a lot more observations in the subsequent months, too.
“It was once thought that all TDEs would look the same. But it turns out that astronomers just needed the ability to make more detailed observations of them,” said Patrick Vallely of Ohio State, who is the second author on the paper. “Recent sky survey projects like ASAS-SN have revealed new features of TDEs that we have not seen before — although we don’t have enough information yet to say whether these variances are common. We have so much more to learn about how they work, which is why capturing one at such an early time and having the exquisite TESS observations was crucial.”
It turns out that ASASSN-19bt is unusual in several of ways.
Its host galaxy is younger and more dust-filled than has previously been observed for other TDE events. Secondly, it experienced a short blip of cooling and fading before its temperature leveled off and its luminosity continued to build toward its peak.
Overall, however, the increase in brightness as ASASSN-19bt approached its peak was extremely smooth with very little variation — something that was not known about TDEs before the TESS data enabled researchers to see one with such detail. This information will improve astronomers’ ability to identify TDEs and differentiate them from other celestial events that have a much choppier emission of light.
“Having so much data about ASASSN-19bt will allow us to improve our understanding of the physics at work when a star is unlucky enough to meet a black hole,” said French.
###
This work was supported by the National Science Foundation, the PJV is supported by the National Science Foundation, Danish National Research Foundation, the Radcliffe Institute for Advanced Studies at Harvard University, a Hubble Fellowship, a Simons Foundation Fellowship, an IBM Einstein Fellowship from the Institute for Advanced Study, Princeton, and the Packard Foundation.
Funding for the TESS mission is provided by NASA’s Science Mission directorate.
ASAS-SN is supported by the Gordon and Betty Moore Foundation, the NSF, the Mt. Cuba Astronomical Foundation, the Center for Cosmologyand AstroParticle Physics at the Ohio State University, the Chinese Academy of Sciences South America Center for Astronomy (CASSACA), the Villum Foundation, and George Skestos.
The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.
Reference: “Discovery and Early Evolution of ASASSN-19bt, the First TDE Detected by TESS” by Thomas W.-S. Holoien, Patrick J. Vallely, Katie Auchettl, K. Z. Stanek, Christopher S. Kochanek, K. Decker French, Jose L. Prieto, Benjamin J. Shappee, Jonathan S. Brown, Michael M. Fausnaugh, Subo Dong, Todd A. Thompson, Subhash Bose, Jack M. M. Neustadt, P. Cacella, J. Brimacombe, Malhar R. Kendurkar, Rachael L. Beaton, Konstantina Boutsia, Laura Chomiuk, Thomas Connor, Nidia Morrell, Andrew B. Newman, Gwen C. Rudie, Laura Shishkovksy and Jay Strader, 26 September 2019, The Astrophysical Journal. DOI: 10.3847/1538-4357/ab3c66
When Elon Musk leads engineering meetings at SpaceX, he says, “the thing I am most impressed with is, what did you undesign?”
Which is to say, what complications did engineers remove? How did they simplify the vehicle?
The cutting is going well, judging by Musk’s annual presentation on how SpaceX, founded with the goal of making humans a multi-planetary civilization, intends to do that. A crowd of employees sporting “Occupy Mars” and “Nuke Mars” t-shirts were on hand to cheer on the boss, 11 years to the day after the company’s first successful launch of a rocket to orbit.
Previous iterations of the event had been delivered in Mexico, in Australia and, fittingly, on Reddit. This time, however, Musk did it in front of actual test hardware at SpaceX’s facility in Cameron County, Texas. And, with a typically aggressive schedule, Musk says that a prototype of the vehicle could make it to orbit in just six months.
“If the design takes too long to build, it’s a bad design,” Musk said, twice repeating a management maxim: “If the schedule is long, it’s wrong; if it’s tight, it’s right.”
SpaceX already flies two kinds of rockets, the Falcon 9 and the Falcon Heavy, for NASA, the US Air Force, and private satellite operators. This next-generation project is a rocket that could mount crewed expeditions to the moon or Mars.
The final version of the fully reusable Starship will be capable of taking 150 tons of payload into orbit, more than twice as much as the Falcon Heavy, currently the most powerful rocket in operation on the planet. It’s pressurized cabin will be roughly equivalent in volume to the International Space Station. But Starship will require a reusable booster, which Musk calls Super Heavy, to leave Earth with any practical amount of cargo or passengers onboard.
To get there, SpaceX has made some radical choices. The rocket will have an unusual stainless steel structure, which Musk says is better suited to withstanding the extreme environment of space. That decision has allowed the company to build the prototypes outdoors here in Texas and near Cape Canaveral in Florida, with two teams racing each other.
Last month in Texas, a test vehicle called Starhopper used a single flight engine to fly 150 meters (492 ft) into the air and then land again.
Now, Musk displayed a completed 50-meter-tall “Mark 1” version of the Starship, with three engines and a more traditional rocket body, displayed next to the company’s first rocket, the Falcon 1. He said that sometime in the next two months, it would fly to an altitude of 20 km before returning to ground for a soft landing.
Musk said that after both work sites had completed two versions of the Starship, they would begin work on the booster required for regular operations. Right now, he said, his company is making one of the engines for the ship, called a Raptor, every eight to 10 days, and hoped to be making one a day sometime in the first quarter of next year. Each Starship will be powered by five Raptors, while the booster will require as many as 37.
The rocket is designed to return to earth in an extreme maneuver, with Musk comparing it to a skydiver. After entering the atmosphere, it falls downward on its belly, before flipping back at an angle to use its rockets to land gently. Given the explosive trial and error required to teach the Falcon boosters to return safely to earth, this new method is likely to resulting in some spectacular tests.
There’s still much to learn before the rocket will go into use, however. Asked about the kind of life-support system required by the vehicle or the number of crew it would support, Musk suggested that more work would need to be done developing efficient mechanisms to recycle oxygen and water. For its biggest plans of seeding a city on Mars or a scientific base on the Moon, the company will need to perfect a technique for refueling the spacecraft in orbit, which it has practiced in part by docking it spacecraft with the International Space Station.
While Musk is promising super-fast development, past experience says the rocket is unlikely to fly to orbit or beyond in the next year. Still, he says this prototype was built in just five months, a rapid pace, and that the design was only finalized in October 2018.
The Starship is the largest of several heavy rockets under development in the US. Jeff Bezos’s space company is developing the New Glenn, which it hopes to debut in 2021. Boeing is building the Space Launch System for NASA, which is about to begin a final period of integrated testing ahead of a hoped-for first flight also expected in 2021.
BOCA CHICA BEACH, Texas—Elon Musk spoke about his vision of a brighter future for humanity on Saturday evening, in South Texas.
Musk acknowledged that there are a lot of problems here on Earth, and it is important for those to get fixed. But it also is important to give people hope for the future, and sense of optimism. He believes the exploration of space, and human expansion into the Solar System, provides this kind of a hopeful vision.
And so, beneath a big Texas sky full of stars, he offered hope in the form of a large spaceship. Mere hours after a team of SpaceX engineers, technicians, and contractors completed assembly of a prototype of the Starship vehicle, Musk revealed it to the world. He did so in an open-air shipyard, hard by the Rio Grande River, where he intends to build dozens if not hundreds of Starship spacecraft.
The prototype loomed behind Musk as he addressed a crowd of a few hundred people, including employees, local residents from Brownsville and surrounding towns, as well as members of the media. Earlier, as the Sun dipped below the horizon, reddish hues glinted off the Starship's surface. As night fell and Musk climbed onto a small dais, it rose tall, dark and imposing.
"This is the most inspiring thing that I have ever seen," said Musk, dressed in a black blazer, t-shirt, and jeans, of the towering spaceship. The crowd cheered. In the moment, Mars seemed a little closer than it had before.
Progress
Three years ago, Elon Musk took the stage in Guadalajara, Mexico, to share the full scope of his Mars ambitions for the first time. He spoke of building a large, interplanetary spaceship—it was not yet named Starship— and a large rocket booster with dozens of engines that would carry 100 people to Mars at a time.
At the time, it seemed audacious, mad, and brilliant at the same time. But mostly the vision seemed like science fiction. Standing in a field in South Texas on Saturday night, it felt a little more like science, and a little less like fiction.
Three years ago, the idea of flying 37 engines on a single rocket seemed fanciful. And then, in early 2018, the company launched with Falcon Heavy with 27 engines. Three years ago, the notion of landing and re-flying a large rocket multiple times seemed distant. But now SpaceX has done this dozens of times.
But most futuristic of all seemed the notion of a 50-meter tall spaceship that could launch into space, fly on to the Moon or Mars, and return to Earth. And yet this was what Musk put on display with the Starship Mk 1 vehicle. Soon, perhaps within one or two months, it will launch to an altitude of 20km. Simultaneously, the company is building a second prototype, Mk 2, in Cocoa, Florida. It will start work on a third version in Texas later this fall, and so on.
Each design will iterate on the last. Engineers will look for ways to shave mass—the Mk 1 prototype weighs 200 tons, and SpaceX would like to eventually cut the overall mass to 110 tons to maximize Starship's lift capacity. Ultimately, a slimmed-down Starship should be able to lift 150 tons of payload into low-Earth orbit, Musk said. Its first orbital flight, launched by a big booster named Super Heavy, could come next year.
This payload capacity is more than any other launch system built before, and would be especially remarkable given that SpaceX has designed both the booster and Starship to be fully reusable. "A rapidly reusable orbital rocket is only barely possible given the physics of Earth," Musk said.
Man of steel
During the presentation, Musk offered several updates on changes to Starship's design. However he spent the most time discussing the use of stainless steel as the skin of the vehicle. "Stainless steel is by far the best design decision we have made," he said.
Yes, Musk said, steel is heavier than carbon composite or aluminum-based materials used in most spacecraft, but it has exceptional thermal properties. At extremely cold temperatures, stainless steel 301 does not turn brittle; and at the very high temperatures of atmospheric reentry, it does not melt until reaching 1500 degrees Centigrade. Starship therefore requires only a modest heat shield of glass-like thermal tiles.
Another benefit is cost, which matters to a company building Starships on its own dime, with the intent to build many of them. Carbon fiber material costs about $130,000 a ton, he said. Stainless steel sells for $2,500 a ton.
"Steel is easy to weld, and weather resistant," Musk added. "The evidence being that we welded this outdoors, without a factory. Honestly, I'm in love with steel."
Listing image by Trevor Mahlmann for Ars
NASA watches
NASA has followed the progress of Starship from afar, investing almost nothing in a vehicle that has the potential to revolutionize human spaceflight—as well as to dramatically bring down the costs of launch.
On Friday, the eve of Musk's Starship presentation in Texas, NASA administrator Jim Bridenstine even splashed some cold water on the proceedings. Bridenstine noted that SpaceX was one of NASA's partners in the commercial crew program, intended to launch astronauts to the International Space Station.
"NASA expects to see the same level of enthusiasm focused on the investments of the American taxpayer," Bridenstine said of SpaceX's apparent zeal for Starship. "It's time to deliver."
Asked about this, Musk replied that the company is only investing about 5 percent of its human resources into developing Starship. The bulk of the company's 6,000 employees are working on the Falcon 9 rocket and Crew Dragon spacecraft to be used for the commercial crew program, he said.
A timeline
After the event, as the hour approached 11pm local time, Musk offered some additional insight during an interview with Ars. Seated alongside the company's principal Mars development engineer, Paul Wooster, Musk expounded upon his timeline for going to the Moon and Mars.
"It depends on whether development remains exponential. If it remains exponential, it could be like two years," Musk said of landing on the Moon. A cargo trip to Mars could happen by 2022, due to the availability of launch windows, he added. "I mean these are just total guesses, as opposed to checking a train schedule."
SpaceX is funding the Starship project with its own money. Some of that comes from positive cash flow from satellite launches. The company has also raised nearly $1 billion from private investors in recent months, and it has also received an undisclosed payment from Japanese Billionaire Yusaku Maezawa as the first customer for a mission to lunar orbit and back.
"I think we're able to see a path to getting the ship to orbit, and maybe even doing a loop around the Moon," Musk said. "Maybe we need to raise some more money to go to the Moon or landing on Mars. But at least getting the Starship to an operational level in low Earth orbit, or around the Moon, I feel like we're in good shape for that."
Life support
A common question about Starship is how the company plans to keep people alive on board the vehicle when it is flying crew instead of cargo missions. SpaceX has some experience with life support after developing the Crew Dragon spacecraft for NASA.
"We definitely have learnt a lot, and we would do it differently," Musk said. "The Dragon life support system is not really all that renewable. It's basically mostly expendable."
For example, Dragon uses lithium hydroxide as a "scrubber" to remove carbon dioxide exhaled by humans, producing lithium carbonate and water as byproducts. This is perfectly adequate for four people for four days, and perhaps could even be used for short missions around, and to the surface of the Moon.
But using Starship to go to Mars would require six months for a journey there, and up to 2.5 years for a roundtrip mission. With as many as 100 people on board the vehicle, that would require a regenerative life support system that will, Musk acknowledged, "take a bit of work."
Urgency
Earlier this month, the senior Senator from Alabama, Richard Shelby, offered a congratulatory tweet to NASA. "Good news," Shelby wrote, noting agency technicians had joined five structures together that make up the core stage of the Space Launch System. "This is the first time since the Apollo program that a rocket of this size has been joined together—a milestone accomplishment," Shelby added.
Four rocket engines must still be attached to the core stage before it is complete. But then, finally, the key component of NASA's mammoth rocket should be ready to undergo ground-based testing. To be sure, NASA and the core stage contractor, Boeing, are to be commended for a technical achievement. However, one might reasonably ask what took so long to get to this point.
In the spring of 2014, I visited the Michoud Assembly Facility, based in southern Louisiana. Already, technicians were building barrels for the Space Launch System rocket's core stage. And NASA was investing tens of millions of dollars to modernize Michoud to produce the rocket. At the time, an aerospace analyst for the Rand Corporation, Peter Wilson, explained that, "They’re throwing the money into this program, into places like Michoud, to make it very expensive to change course."
NASA has not changed course. And after at least 5.5 years, during which time NASA has spent more than $10 billion on the SLS rocket, they are finally almost done assembling that first core stage, consisting of two large fuel tanks, four main engines, and all of a rocket's associated plumbing.
One answer to the question of why this has taken so long, and required so much money, is that there has been a lack of urgency. Large complex development programs—like, say, super heavy lift rockets—work best with low levels of funding during the design phase, a spike during development, and then diminished funding during flight production. Instead, after Congress created the SLS rocket program with a baseline of about $2 billion a year, it kept funding at more or less flat levels plus inflation. This is great strategy for creating and sustaining jobs, but a poor way to go about rocket development.
SpaceX's Starship prototype, fabricated in a field in South Texas in five months, offers a counter example to what a sense of urgency can accomplish.
The SLS rocket core stage, consisting of four space shuttle main engines, measures 64.6 meters tall, with a diameter of 8.4 meters. The Starship Mk1 vehicle is 50.0 meters tall, with a diameter of 9.1 meters. So they are roughly the same size. Neither is the complete rocket. On the launch pad, the SLS will have two very large side-mounted solid-rocket boosters, derived from the space shuttle. And Starship is actually the upper stage of SpaceX's next-generation rocket, Super Heavy.
By itself, the SLS core stage cannot get to orbit. In fact, according to physicist Scott Manley, without its side-mounted boosters a fully-fueled SLS core stage cannot even lift off the launch pad. The SpaceX Starship prototype, with three Raptor engines instead of a full complement of six, also cannot get to orbit. But it should be able to reach at least 25 to 30km, said Manley, who has a popular rocket science YouTube channel.
The SLS rocket remains a couple of years from its maiden flight. Starship, however, will likely make a 20km flight in November, Musk said.
Perhaps the biggest difference between the two new rockets is the velocity of their development. The SLS core stage, which uses heritage technology from the space shuttle, including its main engines, has taken at least 5.5 years to build, and billions of dollars.
Starship Mk 1 didn't even exist until this spring, and it may leap off the pad before year's end. The appears to underscore the value of urgency and clarity of purpose. At SpaceX the urging comes from the top. As Musk said of schedules on Saturday night, "tight is right, long is wrong." And Starship has a clear exploration purpose as well, allowing humans to settle other worlds, and fuel optimism in humanity's future.
SpaceX CEO Elon Musk delivered an update about Starship, the company’s nest generation spacecraft, which is being designed for full, “rapid reusability.” Musk discussed the technology behind the design of Starship, which has evolved somewhat through testing and development after its original introduction in 2017.
Among the updates detailed, Musk articulated how Starship will be used to make humans interplanetary, including its use of in-space refilling of propellant, by docking with tanker Starships already in orbit to transfer fuel. This is necessary for the spacecraft to get enough propellant on board post-launch to make the trip to the Moon or Mars from Earth – especially since it’ll be carrying as much as 100 tons of cargo on board to deliver to these other space-based bodies.
These will include supplies for building bases on planetary surfaces, as well as up to 100 passengers on long-haul planet-to-planet flights.
Those are still very long-term goals, however, and Musk also went into detail about development of the current generation of Starship prototypes, as well as the planned future Starships that will go to orbit, and carry their first passengers.
The Starship Mk1, Mk2 and the forthcoming Mk3 and Mk4 orbital testers will all feature a fin design that will orient the vehicles so they can re-enter Earth’s atmosphere flat on their ‘bellies,’ coming in horizontal to increase drag and reduce velocity before performing a sort of flip maneuver to swing past vertical and then pendulum back to vertical for touch-down. In simulation, as shown at the event, it looks like it’ll be incredible to watch, since it looks more unwieldy than the current landing process for Falcon boosters, even if it’s still just as controlled.
The front fins on the Starship prototype will help orient it for re-entry, a key component of reuse.
Musk also shared a look at the design planned for Super Heavy, the booster that will be used to propel Starship to orbit. This liquid-oxygen powered rocket, which is about 1.5 times the height of the Starship itself, will have 37 Raptor engines on board (the Starship will have only six) and will also feature six landing legs and deployable grid fins for its own return trip back to Earth.
In terms of testing and development timelines, Musk said that the Starship Mk1 he presented the plan in front of at Boca Chica should have its first test flight in just one to two months. That will be a flight to a sub-orbital altitude of just under 70,000 feet. The prototype spacecraft is already equipped with the three Raptor engines it will use for that flight.
Next, Starship Mk2, which is currently being built in Cape Canaveral, Florida, at another SpaceX facility, will attempt a similar high altitude test. Musk explained that both these families will continue to compete with each other internally and build Starship prototypes and rockets simultaneously. Mk3 will begin construction at Boca Chica beginning next month, and Mk4 will follow in Florida soon after. Musk said that the next Starship test flight after the sub-orbital trip for Mk1 might be an orbital launch with the full Super Heavy booster and Mk3.
Musk said that SpaceX will be “building both ships and boosters here [at Boca Chica] and a the Cape as fast as we can,” and that they’ve already been improving both the design and the manufacture of the sections for the spacecraft “exponentially” as a result of the competition.
The Mk1 features welded panels to make up the rings you can see in the detail photograph of the prototype below, for instance, but Mk3 and Mk4 will use full sheets of stainless steel that cover the whole diameter of the spacecraft, welded with a single weld. There was one such ring on site at the event, which indicates SpaceX is already well on its way to making this work.
This rapid prototyping will enable SpaceX to build and fly Mk2 in two months, Mk3 in three months, Mk4 in four months and so on. Musk added that either Mk3 or Mk5 will be that orbital test, and that they want to be able to get that done in less than six months. He added that eventually, crewed missions aboard Starship will take place from both Boca Chica and the Cape, and that the facilities will be focused only on producing Starships until Mk4 is complete, at which point they’ll begin developing the Super Heavy booster.
In total, Musk said that SpaceX will need 100 of its Raptor rocket engines between now and its first orbital flight. At its current pace, he said, SpaceX is producing one every eight days – but they should increase that output to one every two days within a few months, and are targeting production of one per day for early in Q1 2019.
Because of their aggressive construction and testing cycle, and because, Musk said, the intent is to achieve rapid reusability to the point where you could “fly the booster 20 times a day” and “fly the [starship] three or four times a day,” the company should theoretically be able to prove viability very quickly. Musk said he’s optimistic that they could be flying people on test flights of Starship as early as next year as a result.
Part of its rapid reusability comes from the heat shield design that SpaceX has devised for Starship, which includes a stainless steel finish on one half of the spacecraft, with ceramic tiles used on the bottom where the heat is most intense during re-entry. Musk said that both of these are highly resistant to the stresses of reentry and conducive to frequent reuse, without incurring tremendous cost – unlike their initial concept, which used carbon fibre in place of stainless steel.
Musk is known for suggesting timelines that don’t quite match up with reality, but Starship’s early tests haven’t been so far behind his predictions thus far.
NASA announced agreements worth a combined $43.2 million with 14 commercial partners Friday — including Blue Origin and SpaceX — to fund experiments in propellant and power generation, in-space refueling, efficient propulsion systems, and lunar rover technology.
Each of the agreements, with NASA funding commitments ranging from $1.3 million to $10 million, will aid the development of key technologies for the space agency’s exploration initiatives aimed at the moon and Mars, officials said.
The 14 projects announced Friday are the fourth set of funding agreements in NASA’s series of “Tipping Point” solicitations, in which the space agency partners with companies to work on advanced space technologies. Each company is required to fund at least 25 percent of the program costs in the public-private Tipping Point agreements.
“These promising technologies are at a ‘tipping point’ in their development, meaning NASA’s investment is likely the extra push a company needs to significantly mature a capability,” said Jim Reuter, associate administrator of NASA’s space technology mission directorate. “These are important technologies necessary for sustained exploration of the Moon and Mars. As the agency focuses on landing astronauts on the Moon by 2024 with the Artemis program, we continue to prepare for the next phase of lunar exploration that feeds forward to Mars.”
Previous Tipping Point agreements have funded cryogenic propellant storage technologies, the development of planetary landing systems, solar-electric propulsion, smallsat launch vehicles, and robotic in-space manufacturing.
The agreements announced Friday address six focus areas: Cryogenic propellant production and management; sustainable energy generation, storage and distribution; efficient and affordable propulsion systems; autonomous operations; rover mobility; and advanced avionics.
Blue Origin won the biggest share of funding in Friday’s announcements with a $10 million agreement, and NASA awarded SpaceX $3 million to test coupler prototypes for refueling spacecraft such as the company’s Starship vehicle.
Two providers selected by NASA through the Commercial Lunar Payload Services, or CLPS, program also received funding from NASA through the Tipping Point solicitation. Astrobotic and Intuitive Machines are developing commercial robotic lunar landers to deliver NASA science instruments to the lunar surface.
Here is a list of the 14 agreements copied from a NASA’s press release:
Cryogenic Propellant Production and Management
• Blue Origin LLC of Kent, Washington, $10 million
A ground demonstration of hydrogen and oxygen liquefaction and storage, representing rocket and spacecraft propellant that could be produced on the Moon. The demonstration could help inform a large-scale propellant production plant suitable for the lunar surface.
• OxEon Energy LLC of North Salt Lake, Utah, $1.8 million
OxEon Energy will work with the Colorado School of Mines to integrate an electrolysis technology to process ice and separate the hydrogen and oxygen. The molecules could then be cooled to produce fuel for cislunar transport. This technology could provide a flexible and scalable solution for future in-situ resource utilization operations on the Moon.
• Skyre Inc. of East Hartford, Connecticut, $2.6 million
Skyre, also known as Sustainable Innovations, along with partner Meta Vista USA LLC, will develop a system to make propellant from permanently frozen water located at the Moon’s poles, including processes to separate the hydrogen and oxygen, keep the product extremely cold and use hydrogen as a refrigerant to liquefy oxygen.
• SpaceX of Hawthorne, California, $3 million
SpaceX will collaborate with NASA’s Marshall Space Flight Center in Huntsville, Alabama, to develop and test coupler prototypes – or nozzles – for refueling spacecraft such as the company’s Starship vehicle. A cryogenic fluid coupler for large-scale in-space propellant transfer is an important technology to aid sustained exploration efforts on the Moon and Mars.
Sustainable Energy Generation, Storage and Distribution
• Infinity Fuel Cell and Hydrogen Inc. of Windsor, Connecticut, $4 million
The company will collaborate with NASA’s Johnson Space Center in Houston to develop a scalable, modular and flexible power and energy product that utilizes new manufacturing methods to reduce cost and improve reliability. The technology could be used for lunar rovers, surface equipment and habitats.
• Paragon Space Development Corporation of Houston, $2 million
Paragon Space Development Corporation will work with Johnson and NASA’s Glenn Research Center in Cleveland to develop an environmental control and life support system as well as a thermal control system for lunar missions that maintain acceptable operating temperatures throughout the Moon’s day and night cycle. The design of these systems could be adapted for crewed missions to Mars.
• TallannQuest LLC of Sachse, Texas, $2 million
Working with NASA’s Jet Propulsion Laboratory in Pasadena, California, the company, also known as Apogee Semiconductor, will develop a flexible, radiation-hardened switching power controller capable of being configured based on a mission’s power needs. This technology could be used for missions to the Moon, Mars, Jupiter’s moon Europa, and other destinations.
Efficient and Affordable Propulsion Systems
• Accion Systems Inc. of Boston, $3.9 million
The first interplanetary CubeSats, NASA’s MarCO-A and B, used a set of cold gas thrusters for attitude control and course corrections during their cruise to Mars, alongside the Mars InSight lander. Accion and JPL will partner to mature a propulsion system to demonstrate the same capabilities as those required for the MarCO mission, but with a smaller and lighter system that uses less power. The propulsion system could enable more science opportunities with these small, flexible platforms.
• CU Aerospace LLC of Champaign, Illinois, $1.7 million
CU Aerospace, NearSpace Launch and the University of Illinois at Urbana-Champaign will build and test a 6-unit CubeSat equipped with two different propulsion systems. These systems were developed with NASA Small Business Innovation Research (SBIR) funding and offer high performance, low cost and safe pre-launch processing. The company plans to deliver the flight-ready CubeSat to NanoRacks for launch and deployment.
• ExoTerra Resource LLC of Littleton, Colorado, $2 million
ExoTerra will build, test and launch a 12-unit CubeSat with a compact, high impulse solar electric propulsion module. Once flight-ready, the system will be demonstrated in-space as the CubeSat moves from low-Earth orbit to the radiation belts surrounding Earth. This small electric propulsion system could open up the inner solar system for targeted science exploration missions, using affordable spacecraft that range from 44 to 440 pounds.
Autonomous Operations
• Blue Canyon Technologies Inc. of Boulder, Colorado, $4.9 million
As access to space increases, so does the need for ground resources, such as tracking stations. With an in-space demonstration, Blue Canyon Technologies will mature an autonomous navigation software solution for SmallSats and CubeSats so they can traverse space without “talking” to Earth.
Rover Mobility
• Astrobotic Technology of Pittsburgh, $2 million
Astrobotic and Carnegie Mellon University will work with JPL and NASA’s Kennedy Space Center in Florida to develop small rover “scouts” that can host payloads and interface with multiple large landers. This project received previous NASA funding through SBIR awards. The new partnership will develop more mature payload interfaces and increase rover capabilities.
Advanced Avionics
• Intuitive Machines LLC of Houston, $1.3 million
Development of a spacecraft vision processing computer and software to reduce the cost and schedule required for deploying optical, or laser, navigation capabilities on government and commercial missions.
• Luna Innovations of Blacksburg, Virginia, $2 million
Luna Innovations is partnering with Sierra Nevada Corporation, ILC Dover and Johnson to prove the viability of sensors that monitor the structural health and safety of inflatable space habitats located in orbit or on the surface of other worlds.
NASA has given us another historic glimpse into the wonders of space after releasing a video that shows a star-shredding black hole in a galaxy millions of light-years away.
The amazing footage of the "cataclysmic phenomenon" was taken by NASA’s planet-hunting Transiting Exoplanet Survey Satellite, or TESS.
Astronomers think the supermassive black hole weighs around six million times the sun’s mass and is located about 375 million light-years away in a galaxy of similar size to the Milky Way, NASA said.
The incredible event, called a tidal disruption, is very rare and occurs once every 10,000 to 100,000 years in galaxies like the Milky Way.
Hey, Ariana Grande! NASA interns had a blast remixing your song to promote moon mission
It came from outer space: Newly discovered comet is likely interstellar visitor
When a star gets too close, the intense tides of a black hole break apart the star into a stream of gas, according to NASA. As shown in the video, the tail of that stream breaks away from the black hole while other parts of it swing back around and create a halo of debris.
Scientists believe the star in the video may have been about the same size as our sun.
The event, named ASASSN-19bt, was first discovered on Jan. 29 by the All-Sky Automated Survey for Supernovae telescope network, a worldwide network of 24 robotic telescopes headquartered at Ohio State University.
NASA says that scientists have only been able to observe about 40 tidal disruptions in history and TESS was able to capture one after launching in April 2018.
“For TESS to observe (the event) so early in its tenure, and in the continuous viewing zone where we could watch it for so long, is really quite extraordinary,” said Padi Boyd, TESS project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
“Future collaborations with observatories around the world and in orbit will help us learn even more about the different outbursts that light up the cosmos.”
Follow Adrianna Rodriguez on Twitter: @AdriannaUSAT.
India's Chandrayaan-2 lander, Vikram made a "hard landing" on the Moon, but the precise location of the spacecraft is still unknown, the US space agency, NASA said.
Vikram was scheduled to land on September 7 at the Lunar South Pole more than a month after it took off. The lander's descent was normal until it was 2.1km (1.3 miles) from the lunar surface when it veered from the planned path and communications with the lander were lost.
The Indian Space Research Organisation (ISRO) - India's equivalent of NASA - is still trying to find why it lost contact with the lander.
NASA's Lunar Reconnaissance Orbiter (LRO) passed over the landing site on September 17 and took images from the area, but the team has not yet been able to locate or obtain an image of the lander, NASA said in a statement released on Thursday.
"It was dusk when the landing area was imaged and thus large shadows covered much of the terrain, it is possible that the lander is hiding in a shadow," the statement read.
More images are expected to be taken in October.
Our @LRO_NASA mission imaged the targeted landing site of India’s Chandrayaan-2 lander, Vikram. The images were taken at dusk, and the team was not able to locate the lander. More images will be taken in October during a flyby in favorable lighting. More: https://t.co/1bMVGRKslppic.twitter.com/kqTp3GkwuM
After Vikram lost contact, scientists only had until September 21 to establish communications with the lander before the area entered into a lunar night, according to local reports.
Despite the hard landing, ISRO Chairman K Sivan said a plan was being worked out for a moon mission in the future.
"We are working out a detailed future plan," he said on Thursday.
"A national-level committee has been formed to find out what went wrong with the lander. Once the committee submits its report, we will work on what to do in future," he added.
Vikram aimed to conduct "detailed topographical studies, [and] comprehensive mineralogical analyses ... such as the presence of water molecules on the moon".
This was the third time an attempt was made to land the spacecraft on the moon this year.
In January, China made an historic soft landing on the "dark side" of the moon in the South Pole-Aitken Basin area. It was the first spacecraft in history to reach this area. Since then its rover and lander have been operating in that area.
Israel also sent a spacecraft in April, but the landing was problematic and communications were lost when it was about 149 meters (489 feet) above the moon's surface. The attempt ended in a hard landing.
A quasi-particle that travels along the interface of a metal and dielectric material may be the solution to problems caused by shrinking electronic components, according to an international team of engineers.
"Microelectronic chips are ubiquitous today," said Akhlesh Lakhtakia, Evan Pugh University Professor and Charles Godfrey Binder Professor of Engineering Science and Mechanics, Penn State. "Delay time for signal propagation in metal-wire interconnects, electrical loss in metals leading to temperature rise, and cross-talk between neighboring interconnects arising from miniaturization and densification limits the speed of these chips."
These electronic components are in our smartphones, tablets, computers and security systems and they are used in hospital equipment, defense installations and our transportation infrastructure.
Researchers have explored a variety of ways to solve the problem of connecting various miniaturized components in a world of ever shrinking circuits. While photonics, the use of light to transport information, is attractive because of its speed, this approach is problematic because the waveguides for light are bigger than current microelectronic circuits, which makes connections difficult.
A pulse-modulated SPP wave moving right, guided by the interface of a dielectric material (above) and a metal (below), suddenly encounters the replacement of the dielectric material by air. Most of the energy is transmitted to the air/metal interface but some is reflected to the dielectric/metal interface. The video spans 120 femtoseconds.
The researchers report in a recent issue of Scientific Reports that "The signal can travel long distances without significant loss of fidelity," and that "signals can possibly be transferred by SPP waves over several tens of micrometers (of air) in microelectronic chips."
They also note that calculations indicate that SPP waves can transfer information around a concave corner—a situation, along with air gaps, that is common in microcircuitry.
SPPs are a group phenomenon. These quasi-particles travel along the interface of a conducting metal and a dielectric—a non-conducting material that can support an electromagnetic field—and on a macroscopic level, appear as a wave.
According to Lakhtakia, SPPs are what give gold its particular shimmery shine. A surface effect, under certain conditions electrons in the metal and polarized charges in the dielectric material can act together and form an SPP wave. This wave, guided by the interface of the two materials can continue propagating even if the metal wire has a break or the metaldielectric interface terminates abruptly. The SPP wave can travel in air for a few 10s of micrometers or the equivalent of 600 transistors laid end to end in a 14 nanometer technology chips.
SPP waves also only travel when in close proximity to the interface, so they do not produce crosstalk.
The problem with using SPP waves in designing circuits is that while researchers know experimentally that they exist, the theoretical underpinnings of the phenomenon were less defined. The Maxwell equations that govern SPP waves cover continuum of frequencies and are complicated.
"Instead of solving the Maxwell equations frequency by frequency, which is impractical and prone to debilitating computational errors, we took multiple snapshots of the electromagnetic fields," said Lakhtakia.
These snapshots, strung together, become a movie that shows the propagation of the pulse-modulated SPP wave.
"We are studying tough problems," said Lakhtakia. "We are studying problems that were unsolvable 10 years ago. Improved computational components changed our way of thinking about these problems, but we still need more memory."
More information:
Rajan Agrahari et al, Information Transfer by Near-Infrared Surface-Plasmon-Polariton Waves on Silver/Silicon Interfaces, Scientific Reports (2019). DOI: 10.1038/s41598-019-48575-6
Citation:
Jumping the gap may make electronics faster (2019, September 27)
retrieved 27 September 2019
from https://phys.org/news/2019-09-gap-electronics-faster.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.